SYDNEY GRAMMAR SCHOOL

	NAME								
	MATHS MASTER								
			•	C	ANDID	ATE NU	JMBER		

2024 Trial Examination

Form VI Mathematics Extension 1

Friday 16th August, 2024

12.50 pm

General Instructions

- Reading time 10 minutes
- Working time 2 hours
- Attempt all questions.
- Write using black pen.
- Calculators approved by NESA may be used.
- A loose reference sheet is provided separate to this paper.

Fourteen Questions — 70 Marks

Section I (10 marks) Questions 1-10

- This section is multiple-choice. Each question is worth 1 mark.
- Record your answers on the provided answer sheet.

Section II (60 marks) Questions 11-14

- Each question is worth 15 marks.
- Relevant mathematical reasoning and calculations are required.
- Start each question in a new booklet.

Collection

- Your name and master should only be written on this page.
- Write your candidate number on this page, on each booklet and on the multiple choice sheet.
- If you use multiple booklets for a question, place them inside the first booklet for the question.
- Arrange your solutions in order.

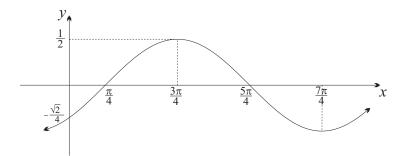
Checklist

- Reference sheet
- Multiple-choice answer sheet
- 4 booklets per boy
- Candidature: 126 pupils

Section I

Questions in this section are multiple-choice. Record the single best answer for each question on the provided answer sheet.

- 1. Given that there are 2000 employees in a company, which of the following represents the least number of employees that must share the same birthday?
 - (A) 3
 - (B) 4
 - (C) 5
 - (D) 6
- 2. What is the amplitude of $y = \sin x \cos x$?
 - (A) $-\sqrt{2}$
 - (B) 1
 - (C) $\sqrt{2}$
 - (D) 2
- 3. Which of the following equations corresponds to the graph shown below?



- (A) $y = \frac{1}{2}\sin(x + \frac{\pi}{4})$ (B) $y = \frac{1}{2}\sin(x - \frac{\pi}{4})$ (C) $y = \frac{1}{2}\cos(x - \frac{\pi}{4})$ (D) $y = \frac{1}{2}\cos(x + \frac{\pi}{4})$
- 4. Given that $\sin \theta = \frac{9}{41}$, and θ is obtuse, which of the fractions shown below is equivalent to $\sin 2\theta$?
 - $(A) -\frac{720}{1681} \\ (B) -\frac{81}{1681} \\ (C) -\frac{81}{1681} \\ (D) -\frac{720}{1681} \\ (A) -\frac{720}{1681} \\ (B) -\frac$

5. Which of the following expressions is equal to $\frac{d}{dx} \tan^{-1} \sqrt{1-x}$?

(A)
$$\frac{1}{2\sqrt{1-2x}}$$

(B) $-\frac{1}{2\sqrt{1-2x}}$
(C) $\frac{1}{2\sqrt{1-x}} \sec^2 \sqrt{1-x}$
(D) $\frac{1}{2(x-2)\sqrt{1-x}}$

6. Which of the following slope fields corresponds to the differential equation y' = y - x?

(A)	<i>V</i> ↑	(B) <i>y</i> ↑
	y 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$(\mathbf{D}) \qquad \qquad$
	X X X X X X X X X X X X X X X X X X X	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
(C)	<i>y</i> †	(D) _{𝒴↑}

(\mathbf{U})				J	/					
	T	1	1	1	ŧ	/	/	/	_	
	1	1	1	/	ŧ	/	/	—	\mathbf{i}	
	1	1	/	/	¥	/	_	\mathbf{i}	١	
	1	/	/	/	¥	—	\mathbf{n}	N	١	
	 1	-/-	/	*		*	×	+	1	>
	/	/	/	—	×	\mathbf{N}	١	١	١	x
	/	/	_	\mathbf{i}	¥	١	١	١	١	
	/	_	\mathbf{i}	Υ.	ŧ	١	١	١	١	
	_	\mathbf{i}	١	١	ŧ	١	١	١	١	

)				J	v 🏚						
	_	/	/	/	ł	1	1	1	I		
	\sim	—	/	/	ł	/	1	1	1		
	Ν.	\mathbf{i}	_	/	ł	/	/	1	1		
	١	Ν	\mathbf{i}	_	¥	/	/	/	1		
	-+	1	1	*	+	*	/	/	-/-	→ ×	
	1	١	١	١	×	-	/	/	/	л	
	1	١	١	١	ł	\mathbf{i}	—	/	/		
	١	١	1	١	ł	١	\mathbf{i}	—	/		
	١	١	١	١	ŧ	١	١	\mathbf{i}	_		

- 7. Given that a = 2i 3j and b = -4i + j, which of the following expressions represents the unit vector in the direction of a + b?
 - (A) $-\frac{1}{\sqrt{2}}(i + j)$
 - (B) $\frac{1}{\sqrt{5}}(i + 2j)$
 - (C) $-\frac{1}{\sqrt{5}}(i+2j)$
 - (D) $\frac{1}{\sqrt{2}}(i + j)$
- 8. Which equation below is the general solution to x + yy' = 0, where C is an arbitrary constant and $y \neq 0$?
 - (A) $y = -\frac{x^2}{2y} + C$ (B) $y = -\frac{x^2}{y^2} + C$ (C) $y = \pm \sqrt{C + x^2}$ (D) $y = \pm \sqrt{C - x^2}$
- 9. Which of the following expressions is $\int \frac{4}{x} (\ln x)^3 dx$?
 - (A) $(\ln x)^4 + C$ (B) $4x^4 \ln x + C$ (C) $\frac{4x^4}{\ln x} + C$ (D) $\frac{4}{x^4} + C$

10. Which differential equation below does not represent a form of the logistic equation?

(A)
$$\frac{dN}{dt} = \frac{t}{50} \left(1 - \frac{t}{100} \right)$$

(B) $\frac{1}{N} \cdot \frac{dN}{dt} = 12 - \frac{N}{6}$
(C) $\frac{dN}{dt} = \sqrt{3} \left(N - \left(\frac{N}{100} \right)^2 \right)$
(D) $\frac{dN}{dt} = \frac{N}{18} \left(2 - \frac{N}{10} \right)$

End of Section I

The paper continues in the next section

1

 $\mathbf{2}$

1

 $\mathbf{2}$

1

|2|

3

3

Section II

This section consists of long-answer questions. Marks may be awarded for reasoning and calculations. Marks may be lost for poor setting out or poor logic. Start each question in a new booklet.

QUESTION ELEVEN (15 marks) Start a new answer booklet.

(a) (i) Find the values of a and b if $x^2 + 4x - 21 = (x+a)^2 - b$.

(ii) Hence find
$$\int \frac{1}{\sqrt{21 - 4x - x^2}} dx$$
.

(b) Let $f(x) = (x^2 + k)(2x + 3) + 3$, where k is a constant.

- (i) Write down the remainder when f(x) is divided by (2x+3).
- (ii) Given that the remainder when f(x) is divided by (x-2) is 24, prove that k = -1.
- (iii) Hence factorise f(x) completely.
- (c) A school play requires at least two boys and exactly twice as many girls as boys. If four boys and six girls audition, how many different casts can be formed?
- (d) Find the coefficient of x^4 in the expansion of $(1+3x)^4(1-x)^5$.
- (e) Use the substitution $u = x^2 3x + 1$ to evaluate $\int_3^5 \frac{2x 3}{\sqrt{x^2 3x + 1}} dx$. Give your answer as an exact value.

1

1

 $\mathbf{2}$

 $\mathbf{2}$

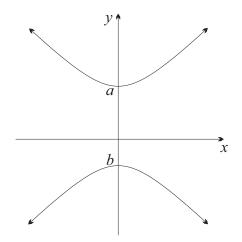
|2|

 $\mathbf{2}$

QUESTION TWELVE (15 marks) Sta

Start a new answer booklet.

- (a) Let $f(x) = \cos^{-1} x$. Sketch the graphs of the following, clearly showing intercepts and endpoints. Your graphs should be on separate number planes and be about one-third of a page each.
 - (i) y = f(x)
 - (ii) |y| = f(|x|)
- (b) The graph below has y-intercepts a and b and is defined by the parametric equations $x = 3 \tan \theta$ and $y = 1 3 \sec \theta$.



- (i) Find the Cartesian equation of the graph.
- (ii) Hence, or otherwise, find the values of a and b.
- (c) At time t = 0, a football is kicked and leaves the ground with speed 20 m/s at an angle of projection of 30° to the horizontal. Assume that upwards and to the right are positive and that the magnitude of acceleration due to gravity is 10 m/s^2 .
 - (i) If the initial velocity is given by the vector V = ai + bj, find the values of a and b.
 - (ii) How high is the ball above the ground when it has travelled $5\sqrt{3}$ metres horizontally?
 - (iii) What is the exact speed of the ball, and the angle of the ball's velocity to the horizontal, when t = 1.5 s?
- (d) Let $\underline{a} = \lambda \underline{i} + 3\underline{j}$ and $\underline{b} = 6\underline{i} 2\underline{j}$. The length of the projection of \underline{a} onto \underline{b} is $3\sqrt{10}$. **3** Find the possible values of λ .

3

 $\mathbf{2}$

 $\mathbf{2}$

1

1

1

1

 $\mathbf{2}$

QUESTION THIRTEEN (15 marks) Start a new answer booklet.

- (a) Find the exact volume of revolution when the region bounded by the curve $y = \cos x$ and the x-axis, between $x = \frac{\pi}{4}$ and $x = \frac{\pi}{3}$, is rotated about the x-axis.
- (b) A spherical water purification tablet is added to a tank of water. After t hours, the tablet is a sphere with radius r mm, surface area $A \text{ mm}^2$ and volume $V \text{ mm}^3$. The tablet dissolves with a rate of change of volume directly proportional to its surface area, such that

$$\frac{dV}{dt} = -k_1 A,$$

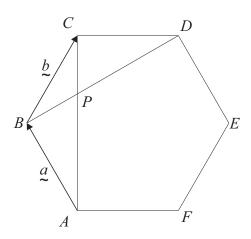
where k_1 is a positive constant. Let V_0 be the volume at t = 0.

You may assume the formulae $V = \frac{4}{3}\pi r^3$ and $A = 4\pi r^2$.

(i) Show that
$$\frac{dV}{dt} = -k_2 V^{\frac{2}{3}}$$
, where $k_2 = k_1 (36\pi)^{\frac{1}{3}}$. 2

(ii) Solve $\frac{dV}{dt} = -k_2 V^{\frac{2}{3}}$ to obtain V in terms of t, k_2 and V_0 .

- (iii) In six hours $\frac{7}{8}$ of the volume of the tablet has dissolved. Express k_2 in terms of V_0 .
- (iv) How long, to the nearest minute, does it take for 99% of the volume of the tablet to dissolve?
- (c) The diagram below shows the regular hexagon ABCDEF. Let $\overrightarrow{AB} = a$ and $\overrightarrow{BC} = b$. Interval BD intersects AC at P where $\overrightarrow{AP} = \lambda \overrightarrow{AC}$.



- (i) Express the ratio $|\overrightarrow{AP}| : |\overrightarrow{PC}|$ in terms of λ .
- (ii) Find an expression for \overrightarrow{AP} in terms of \underline{a} , \underline{b} and λ .
- (iii) Use vector methods and the fact that ABCDEF is a regular hexagon, to express \overrightarrow{BD} in terms of \underline{a} and \underline{b} .
- (iv) Hence use vector methods to find the exact value of λ .

|2|

3

1

3

1

 $\mathbf{2}$

3

QUESTION FOURTEEN (15 marks) Start a new answer booklet.

- (a) A drone flies over a city at a constant altitude of $800 \,\mathrm{m}$ and velocity of $108 \,\mathrm{km/h}$. A soldier on the ground waits until the drone is directly above her before firing a bullet that leaves the gun at a speed of $300 \,\mathrm{m/s}$. You may assume that the magnitude of the acceleration due to gravity is $10 \,\mathrm{m/s^2}$.
 - (i) At what angle to the horizontal must she fire the bullet in order to hit the drone?
 - (ii) How high above the ground must the drone be so that it is too high to shoot down?
- (b) The rate of change of a tadpole population is given by the differential equation

$$\frac{dP}{dt} = rP\left(1 - \frac{P}{k}\right)$$

where P is the number of tadpoles after t days, and r and k are positive constants. Initially, the pond is home to P_0 tadpoles.

- (i) Show that the tadpole population is increasing when 0 < P < k.
- (ii) Solve the differential equation to find P as a function of t.
 - You may assume $\frac{k}{P(k-P)} = \frac{1}{P} + \frac{1}{k-P}$.
- (iii) Find $\lim_{t \to \infty} P$, which is the maximum number of tadpoles that the pond can support.
- (iv) Find an expression for the time when the rate of change of population is greatest.
- (c) Consider the sequence $T_n = \sin(x + (n-1)y)$ for integers $n \ge 1$.

Use mathematical induction to show that, for $n \ge 1$,

$$T_1 + T_2 + T_3 + \dots + T_n = \frac{\sin\left(x + \frac{1}{2}(n-1)y\right)\sin\left(\frac{1}{2}ny\right)}{\sin\frac{1}{2}y}$$

———— END OF PAPER ————

Sydney Grammar School Extension I Trial Examination 2024

2000 employees, 365 days. $5 \times 365 = 1825$ $6 \times 365 = 2190$ |·) :- Least number of employees that share the same birthday is 6. 2) $y = \sin x - \cos x = R \cos(x - \alpha)$ $R = \sqrt{(1)^2 + (-1)^2} = \sqrt{2}$ С 3.) $y = \frac{1}{2} \sin(x - \frac{\pi}{4})$ B Sin Q = 9 41 4.) 96° 2'0 2 180° : Ind guadrant. 9 07 $\sin 2\theta = 2\sin \theta \cos \theta$ $\sin \theta = \frac{9}{41} \cos \theta = -\frac{40}{41}$ 40 $\sin 2\theta = 2 \times 9 \times -40$ $\frac{4}{4} \times -\frac{40}{41}$ $= -\frac{720}{1681}$ A

5.) d tan VI-2c $\mathcal{U} = (l - \varkappa)^{\frac{\gamma_2}{2}}$ $u' = \frac{1}{2}(1-x)^{1/2}$ $\frac{d}{dx} + \frac{d}{dx} = \frac{u'}{1 + u^2}$ $= \frac{1}{\sqrt{1-x}}$ $= \frac{-1}{2\sqrt{1-2c}}$ $I + \sqrt{1-2c}^{2}$ $= 2\sqrt{1-x}(1+1-x)$ = -1 $2(2-x)\sqrt{1-x}$ $= \frac{1}{2(x-2)\sqrt{1-x}}$ \mathcal{D} (6) y' = y - xC $\overrightarrow{f} = \begin{bmatrix} 2\\ -3 \end{bmatrix} \quad b = \begin{bmatrix} -4\\ 1 \end{bmatrix} \quad a + b = \begin{bmatrix} -2\\ -2 \end{bmatrix}$ $|a + b| = \sqrt{(-2)^2 + (-2)^2} = \sqrt{8} = 2\sqrt{2}$ $:=\frac{1}{26}\left(-2i-2j\right)$ $= \frac{-2}{2\sqrt{2}}\left(\frac{i}{2}+\frac{i}{2}\right)$ $= -\frac{1}{\sqrt{2}}\left(\frac{i}{2}+\frac{j}{2}\right)$ A

 $8) \qquad x + yy' = 0 \qquad y \neq 0$ yy' = - >c y dy = -2c $\int y \, dy = \int x \, dx$ $y^{2} = -\frac{x^{2}}{2} + C$ $\frac{y^{2}}{2} = \frac{x^{2}}{2} + C$ $y^2 = -\chi^2 + C$ \mathcal{D} $y = -\frac{1}{\sqrt{C-x^2}}$ $(q_{\cdot}) \int f'(x) \left[f(x) \right] dx = \frac{1}{n+1} \left[f(x) \right]^{n+1} + C$ $4\int_{-\infty}^{2}\left[\ln(x)\right]dx = 4 \times \frac{1}{4}\left[\ln(\infty)\right] + c$ $= (ln(2c))^{4} + C$ $\frac{dN}{dt} = \frac{t}{50} \left(\frac{1-t}{100} \right)$ is not of the form 10.) $\frac{dN}{dt} = KN(P-N)$ A

 $x^{2} + 4x - 21$ 11)a) i) $=(x+2)^2-4-21$ $=(x+2)^2-25^2$ $a = 2 \quad b = 25$ ii) $\sqrt{-(\chi^2 + 4\chi - 21)}$ d > C $= \int \frac{1}{\sqrt{-[(x+2)^{2}-25]}} dx$ $= \int \frac{1}{\sqrt{25 - (x+2)^2}} dx$ $\sin^{-1}\frac{2c+2}{5}+C$ ー Warking mark for necognising sin of some function.

i) $(x^2 + k)(2x + 3) + 3$ 6) = x2+k remainder 3. 2x + 3ii) f(z) = 2424 = (4+k)(4+3) + 3 $24 = (4+k) \times 7 + 3$ 2| = 7(4+k)3 = 4 + kk = -1 $f(y) = (x^2 - i)(y + 3) + 3$ iii) $= 2x^3 + 3x^2 - 2x - 3 + 3$ $= 2x^3 + 3x^2 - 2x$ $= \chi (2\chi^2 + 3\chi - 2)$ $= \chi(2x-1)(x+2)$ At least 2 boys, exactly twice as many c) girls. bous girls 2 4 3 6 for either case identified. ${}^{4}C_{2} \times {}^{6}C_{4} + {}^{4}C_{3} \times {}^{6}C_{6} = 94$ either

 $\frac{d}{d} \left(\left(1+3x \right)^{4} = \frac{4}{6} + \frac{4}{6} \left(3x \right)^{2} + \frac{4}{6} \left(2\left(3x \right)^{2} + \frac{4}{6} \left(3x \right)^{3} + \frac{4}{6} \left(4\left(3x \right)^{4} \right)^{4} \right)^{4} \right)^{4}$ $\left(\left(1-3x \right)^{5} = \frac{5}{6} + \frac{5}{6} \left(-x \right)^{2} + \frac{5}{6} \left(2\left(-x \right)^{2} + \frac{5}{6} \left(3\left(-x \right)^{3} + \frac{5}{6} \left(4\left(-x \right)^{4} + \frac{5}{6} \left(-x \right)^{5} \right)^{4} \right)^{4} \right)^{4}$ terms in x^{4} : ⁴Co x ⁵C4(-x)⁴ + ⁴C₁(3x) x ⁵C₃(-x)⁴ + ²C₂(3x)² x ⁵C₂(-x)² + ${}^{4}C_{3}(3x)^{3} \times {}^{5}C_{1}(-x) + {}^{4}C_{4}(3x) \times {}^{5}C_{0}$ I for any one of connect 5 cases seen, above. $= 1 \times 5 \times 4 + 12 \times (-10 \times 3) + 54 \times 2 (10 \times 2) + 108 \times (-5 \times) + 81 \times 4$ $= 5x^{4} - 120x^{4} + 540x^{4} - 540x^{4} + 81x^{4}$ Coefficient = - 34 e) $\int_{2}^{5} \frac{\partial x - 3}{\sqrt{x^2 - 3x \neq 1}} dx$ $= \frac{1}{\sqrt{2x^2 - 3}} \frac{du}{du}$ $\int \frac{\sqrt{x^2 - 3x + 1}}{\sqrt{x^2 - 3x + 1}} \frac{du}{(2x - 3)}$ $u = x^2 - 3x + l$ $\frac{du}{dx} = \frac{\partial x}{\partial x} - 3$ $= \int u^{-1/2} du \qquad \sqrt{or}$ $= \int u^{-1/2} du \qquad \sqrt{or}$ $= \int u^{-1/2} \sqrt{u^{-1/2}} \sqrt{u^{-1/2}}$ $\frac{du}{2x-3} = \frac{dx}{2}$ 5->1/ $= 2(J_{11} - 1)$ (factorisation not req.) 3->1

12)a) i y y = cos(x)ゼン -1 y i) $|y| = \cos(|z|)$ TT Z -1 e.c.f ;f i) inconect -# cusp/shape Don't deduct missing x and for y an axes. Do deduct for any missing values as per above.

y = 1 - 3secO3secO = 1 - y $\chi = 3tanQ$ 6) i) $\chi^2 = 9 \tan^2 Q \checkmark$ $\pi^2 = 9\left(\operatorname{Sec}^2 \theta - 1\right)$ $9 \sec^2 \theta = (1-y)^2$ $9sec^2 \theta - 9 = (1 - y)^2 - 9$ $Q(sec^2 \theta - 1) = (1 - y - 3)(1 - y + 3)$ $\pi^{2} = (-2 - y)(4 - y)$ $\pi^{2} = (-2 - y)(4 - y)$ ii) $\chi = -\frac{1}{\sqrt{(y+z)(y-4)}}$ (y+z)(y-4) ≥ 0 - z 4 $y \ge 4$ or $y \le -2$ a = 4, b = -2 (Both) I working mark if supstitute x = 0 its catesian or parametric equations

c)
$$x^{1/2}$$

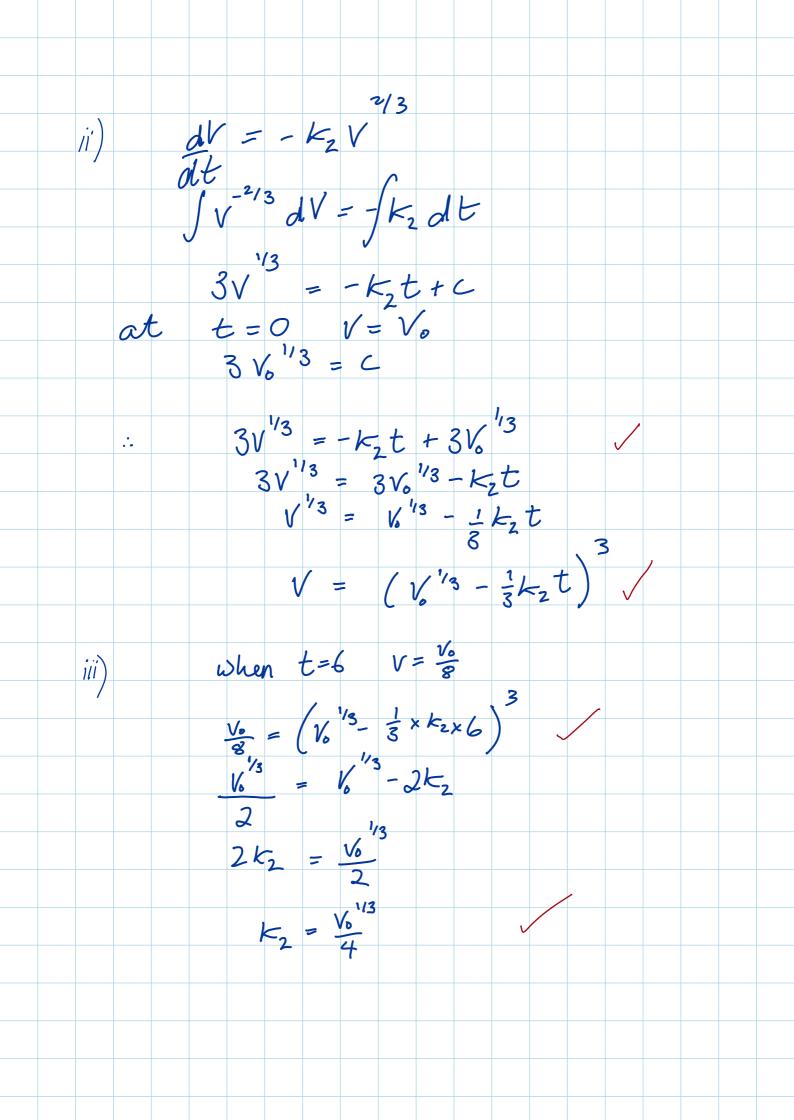
i) x^{0} [2050-30
 z_{200030}
iiihally; $V = 200630i + 205030j$
 $V = 10 \cdot 5ij + 10j$
 $V = 10 \cdot 5ij + 10j$
 $V = 10 \cdot 5ij + 10j$
 $ii)$ $i = 10.8$
 $x = 10.8t$
 $4t \cdot \chi = 5 \cdot 73$
 $5 \cdot 6 = 10$
 $ij = -10$
 $ij = -10 + c$
 $t = 0, ij = 10, \therefore c = 10$
 $y = -5t^{2} + 10t + 3$
 $t = 0, j = 0, \therefore D = 0$
 $y = -5t^{2} + 10t$
 $y = -5t^{2} + 10t$

 $(\overline{11})$ t=1.5 $\overline{x}=10\sqrt{3}$ $y^{-} = -10 \times 1.5 + 10$ $y^{-} = -5$ $speed = \sqrt{(10\sqrt{3})^2 + (-5)^2}$ = 5325 m/s = 5 J13 m/S. het angle to honizontal be a $\frac{10\sqrt{3}}{3}$ 5 $|t_{01}x| = 5$ $10\sqrt{3}$ $\alpha = 16.102$: Angle to nonizontal = -16° (To nearest degree). (must be negative, any reasonable rounding.)

$$d) \quad proj a = \left(\frac{a \cdot b}{b^{2}}\right) b \\ = \left(\frac{6 \cdot x - 6}{40}\right) \left[\frac{6}{-2}\right] \\ = \left(\frac{6 \cdot x - 6}{40}\right) \left[\frac{6}{-2}\right] \\ \frac{lug}{h} = \left(\frac{6 \cdot x - 6}{40}\right) \left[\frac{6}{-2}\right] \\ \frac{lug}{h} = \left(\frac{6 \cdot x - 6}{40}\right) \left[\frac{6}{-2}\right] \\ \frac{lug}{h} = \left(\frac{6 \cdot x - 6}{40}\right) \left[\frac{6}{-2}\right] \\ \frac{lug}{h} = \left(\frac{6 \cdot x - 6}{40}\right) \left[\frac{6 \cdot x - 6}{40}\right] \\ \frac{lug}{h} = \left(\frac{6 \cdot x - 6}{40}\right) = 3 \cdot 10 \\ \frac{1}{100} = \frac{1}{2} \cdot \frac{100}{2} \\ \frac{1}{2} \cdot \frac{100}{2} - \frac{100}{2} \\ \frac{1}{2} \cdot \frac{100}{2} - \frac{100}{2} \\ \frac{1}{2} \cdot \frac{100}{2} + \frac{100}{2} \\ \frac{100}{2} - \frac{100}{2} \\ \frac{100}{2} \\ \frac{100}{2} - \frac{100}{2} \\ \frac{100}{2} \\ \frac{100}{2} - \frac{100}{2} \\ \frac{100}{2$$

13). a) $OG^{2}nx = \frac{1}{2}(1+\cos 2nx)$ # 2 77/3 $V = \int \frac{1}{\pi} \int \frac{1}{\sqrt{2}} dx = \frac{1}{\sqrt{2}} \int \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} dx$ $= \pi \int_{-\infty}^{\pi/3} \frac{1}{2} (1 + \cos 2x) \, dx$ $= \frac{T}{T_{4}} + \frac{T}{3}$ $= \frac{T}{2} + \cos 2x \, dx$ $= \frac{T}{3}$ $= \frac{\pi}{2} \int x + \frac{1}{2} \sin 2x \int \pi/y \sqrt{2}$ $=\frac{\pi}{2}\left[\left(\frac{\pi}{3}+\frac{1}{2}Sii\left(\frac{2\pi}{3}\right)\right)-\left(\frac{\pi}{4}+\frac{1}{2}Sii\left(\frac{2\pi}{4}\right)\right)\right]$ $=\frac{\pi}{2}\left[\frac{\pi}{3}+\frac{1}{2}Sii\left(\frac{\pi}{3}\right)-\frac{\pi}{4}-\frac{1}{2}Sii\left(\frac{\pi}{2}\right)\right]$ $=\frac{11}{2}\left[\frac{11}{12}+\frac{1}{2}\times\frac{\sqrt{3}}{2}-\frac{1}{2}\times1\right]$ $=\frac{11}{2}\left(\frac{11}{12}+\frac{\sqrt{3}}{4}-\frac{1}{2}\right)$ $=\frac{1}{2}\left[\frac{1}{72}+\frac{3\sqrt{3}}{72}-\frac{6}{72}\right]$ $=\frac{\pi}{24}(\pi+3\sqrt{3}-6)\alpha^{3}$

(b);) Show $\frac{dV}{dt} = -k_2 V^{2/3}$ where $k_2 = k_1 (36\pi)^{3/3}$ Ginen: dV = -k, A dt $A = 4\pi r^2$ $V = 4\pi r^3$ $\overline{3}$ $\frac{3V}{4\pi} = r^{3}$ $\frac{1}{3}$ $r = \left(\frac{3V}{4\pi}\right)^{2}$ $\frac{2}{3}$ $\begin{array}{c} \therefore \quad dV = \frac{1}{k_{1}} \times \frac{4\pi}{4\pi} \begin{pmatrix} 3V \\ 4\pi \end{pmatrix} \begin{pmatrix} 5 \\ 4\pi \end{pmatrix} \\ \frac{dV}{4\pi} \end{pmatrix}^{2/3} \times V \\ \frac{dV}{dt} = -\frac{k_{1}}{4\pi} \times \frac{4\pi}{4\pi} \times \frac{3}{2} \times V \\ \frac{dV}{dt} = -\frac{k_{1}}{4\pi} \times \frac{4\pi}{4\pi} \times \frac{3}{2} \times V \\ \end{array}$ $dV = -K, \times (4\pi)^{1/3} \times 9^{1/3} \times V^{1/3}$ $\frac{dV}{dL} = -k_1 \left(36\pi\right) \times V$:. $dV = -k_2 V$ where $k_2 = k_1 (36\pi)$ 1/3



 $V = \begin{pmatrix} 1/3 & \frac{1}{3} \\ V = \begin{pmatrix} 1/3 & \frac{1}{3} \\ V_0 \end{pmatrix} \\ \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3$ iv) 99% dissolved $\frac{V_{o}}{100} = \left(V_{o}^{\prime \prime 3} \left(1 - \frac{t}{12} \right) \right)$ $\frac{V_0}{100} = V_0 \left(1 - \frac{t}{12}\right)$ $\frac{1}{100} = \left(1 - \frac{1}{12}\right)^3$ $\frac{1}{3\sqrt{100}} = 1 - \frac{1}{2}$ $\frac{1}{12} = 1 - \frac{1}{3}$ $t = 12(1 - \frac{1}{\sqrt{100}})$ 2 9.414678.... hrs 七 t = 9 hours and 25 minutes. (Do not penalise rounding despite what the question sery s.)

IAP 1 : IPCI \mathcal{C} *i*) χ : 1-2 $\overrightarrow{AC} = a + b$;;) $\overrightarrow{AP} = 7 \times \overrightarrow{AC}$ $= \gamma(a + b)$ iii) C D b/1. Ē B -> BD = AE = 2b - a $\vec{BP} = (1 - 2)\vec{BD}$ i√) $= (1 - \frac{1}{2})(2b - a)$ $\therefore \overrightarrow{AP} = \overrightarrow{AB} + \overrightarrow{BP}$ = a + (1 - 2)(2b - a)= a + 2b - a - 27b + 7abut from ii) $\overrightarrow{AP} = 7a + 7b$ Comparing coefficients of b: 7 = 2-27 $3\lambda = 2$ $\lambda = \frac{2}{3}$

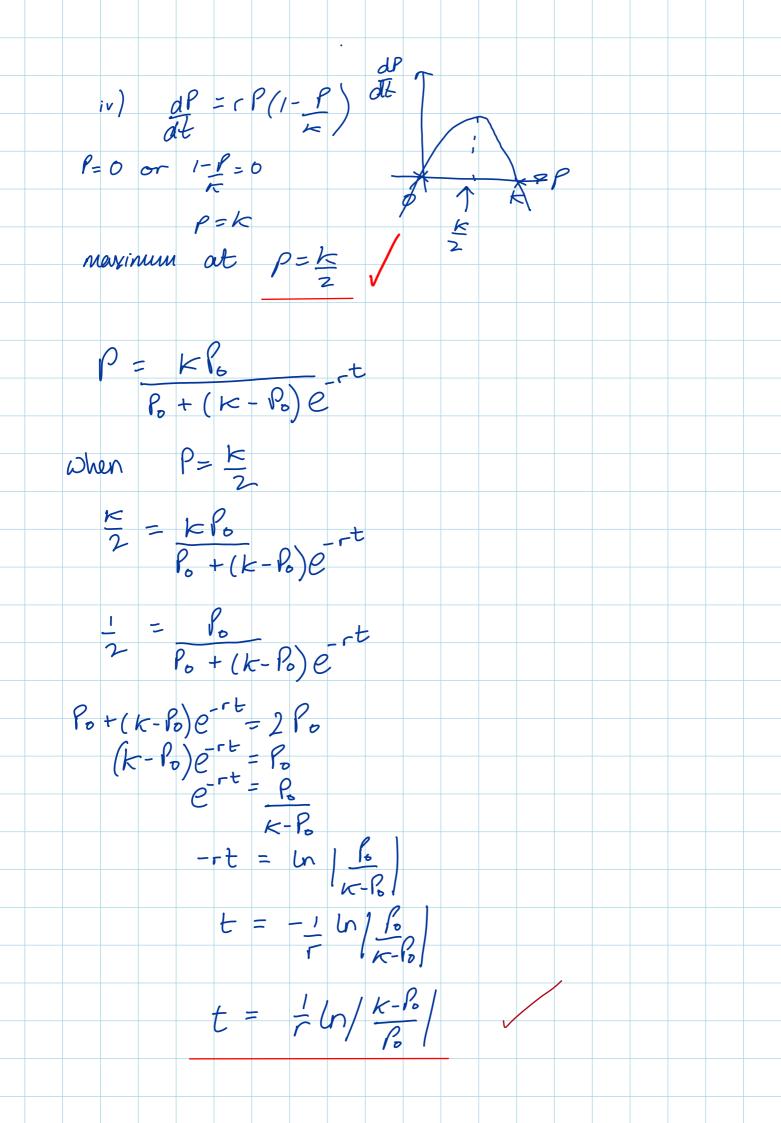
14) a) i) 108 km/h = 30m/S 200 m 800 m 3005in X 30000SX het angle to honizontal be X. To hit, honizontal displacement of both drone and builtet must be equal. Drone: $\dot{x} = 30$ / Bullet: $\ddot{x} = 0$ x = 30t $\dot{z} = 300c$ z = 300 case ((expressions x = 300tcosx) for 2C.) 300trosd = 30t to hit 2. $(\partial S d = \frac{1}{10}$ $\frac{2}{2} = \frac{\cos^{-1}(\frac{1}{2})}{284^{\circ}}$ (to nearest degree) ií) Bullet Vertically: ÿ = -10 $\dot{y} = -10t + 300s \, n \, x$ 10/3/11 $g = -5t^2 + 300tsinX$ $\cos x = \frac{1}{10}$ $\sin \alpha = \frac{3\sqrt{11}}{10}$ $y = -5t^2 + 300t sid$ $y = -5t^{2} + 300t\left(\frac{3}{10}\right)$ $y = -5t^2 + 90\pi t$ -10t+300 smx=0 Maxht when y=O t = 305in x = 30 311

= 911 sels

Find when y=0, use symmetry to find when y=ymax het y=0 $0 = -5t^{2} + 90\sqrt{11}t$ $\mathcal{O} = t^2 - 18 \sqrt{11} t$ $0 = t(t - 18\sqrt{1})$ t=0 and $t=18\sqrt{11}$ gives y=0ax when $t=0+18\sqrt{1}=9\sqrt{1}$ 2 seconds Ymax when $= -5(9\sqrt{11})^{2} + 90\sqrt{11}(9\sqrt{11})$ Ymax J = - 5 x 8/ x 11 + 810 x 11 = 4455 m= 4.455 km

6) i) Tadpoles: 02P2K PLK $\frac{P}{K} \ge 1$ $\frac{P}{K} \ge 1 - \frac{P}{K}$ logical avgument. 1- P 70 K r, P>O or df>O $\therefore r P(1-\frac{P}{K}) > 0$: dP >0 dt for OxPxk p ii) $dt = \Gamma P(1 - \frac{P}{k})$ $-\ln\left|\frac{k-p}{p}\right| = st + C_2$ $\ln \left| \frac{\kappa}{p} - 1 \right| = -rt + C_{s}$ $\frac{\kappa}{p} - 1 = e^{-rt + C_{s}}$ $k \cdot \frac{dP}{dt} = rP(1-\frac{1}{k})k$ $\frac{\kappa}{p} = 1 + e$ $\frac{k \cdot dP}{dt} = rP(k - P)$ $(at A = e_{-rt})^{C_2}$ Jrth-P) dP = Jrdt $\frac{k}{p} = 1 + Ae$ Since $k = \frac{1}{p} + \frac{1}{k-p}$ $P(k-p) = \frac{1}{p} + \frac{1}{k-p}$ $P = \frac{K}{1 + Ae^{-rt}}$ $\int \frac{1}{P} + \frac{1}{K-P} dP = rt + C,$ at $t=0, P=P_0$ ln 191 - ln 1k-P1=rt+C, V $P_0 = K$ I + A $\ln \left| \frac{P}{L-P} \right| = rt + C,$ $1+A = \frac{k}{B}$

 $A = \frac{k}{P_0} - 1$ A = K - Po Po Po Requires day full, logical progression for 3 marks. $A = \frac{k - P_0}{P_0}$ ·. ρ = k $P = \frac{k}{1 + \left(\frac{k}{R_0}\right)e^{-t}}$ $P = \frac{k}{R_0} \frac{k}{V_0} \frac{k}{r_0} \frac{k}$ $\begin{array}{c} \text{(ii)} \quad \lim_{t \to 2} P = \lim_{t \to \infty} \frac{k P_0}{P_0 + (k - P_0) P_0} \end{array}$ Needs justification $= \frac{k}{R_0}$ = K



C) Prome Sine 1 $\sin(x+y) + \sin(x+2y) + \dots + \sin(x+(n-1)y)$ $= \sin\left(z + \frac{1}{2}(n-i)y\right)\sin\left(\frac{1}{2}ny\right)$ Sin(2y) for n >, 1 het n = 1 A. LHS = Sin(x) $RHS = Sin(x+\frac{1}{2}xOxy)Sin(\frac{1}{2}y)$ 5ú (1/2 y) = Sin(x)= LHS. The statement is true for n = 1. B. Assume true for n=K. Assume $\sin x + \sin(x+y) + \sin(3c+2y) + \cdots + \sin(3c+(k-1)y)$ $= \sin(x + \frac{k-1}{2}y)\sin(\frac{1}{2}ky)$ $sin\left(\frac{1}{2}y\right)$ Now prone for n= k+1, prone Setup $Sn(x) + Sn(x+y) + Sn(x+2y) + \dots + Sn(x + (k-1)y)$ + Sin(x + ky)Conet = $Sin(x + \frac{1}{2}ky)Sin(\frac{1}{2}(k+1)y)$ $Sim(\frac{1}{2}y)$ $LHS = sn(x) + sn(x+y) + sn(x+2y) + \cdots +$ $\sin(x+(k-1)y) + \sin(x+ky)$ $= \frac{\sin(x + \frac{1}{2}(k-1)y)}{\sin(\frac{1}{2}ky)} + \frac{\sin(x+ky)}{\sin(x+ky)}$ Sm(29)

* By the induction hypothesis. $= \frac{\sin(x + \frac{1}{2}(t-1)y)\sin(\frac{1}{2}ty) + \sin(x+ty)\sin(\frac{1}{2}y)}{\sin(\frac{1}{2}y)}$ = $\frac{\sin(x + \frac{1}{2}(k-1)y)\sin(\frac{1}{2}ky) + \sin(x+ky)\sin(\frac{1}{2}y)}{\sin(\frac{1}{2}y)}$ Sin (- 4) $\sin(A)\sin(B) = \frac{1}{2}(\cos(A-B) - \cos(A+B))$ Use of Roduct to Sums $=\frac{1}{2}\left(\cos(x+\frac{k-1}{2}y-\frac{ky}{2})-\cos(x+\frac{k-1}{2}y+\frac{ky}{2})\right)$ $+\frac{1}{2}\left[\cos(x+ky-\frac{y}{2})-\cos(x+ky+\frac{y}{2})\right]$ Sin (1/2) $\frac{1}{2}\cos(x-\frac{y}{2}) - \frac{1}{2}\cos(x+y(\frac{2h-1}{2})) + \frac{1}{2}\cos(x+y(\frac{2h-1}{2}))$ $-\frac{1}{2}\cos(x+y(\frac{2k+1}{2}))$ si (1/2) = \$ coo(>c-\$) - \$ coo (>c+ (k+2)y) Sin 1/2 $= \frac{1}{2} \left[\cos\left(3c+\frac{ky}{2}\right) - \left(\frac{ky}{2}+\frac{y}{2}\right) \right] - \cos\left(3c+\frac{ky}{2}\right) + \left(\frac{ky}{2}+\frac{y}{2}\right) \right] \sqrt{\frac{weo}{5um}}$ product Sin Va = sin(x+ky) sin(ky+y) Sin 2 Using product to sums there A=(64ky) B=(ky+y) Sintz B=(++) = RHS By Riniple of Mathematical Induction result time for all positive integer n.

C. By the process & mathematical induction, the statement is the for n = 1, n = K and n = k + l, therefrence is true for all NZ/.